Wind power forecasting helps with the planning for the power systems by contributing to having a higher level of certainty in decision-making. Due to the randomness inherent to meteorological events (e.g., wind speeds), making highly accurate long-term predictions for wind power can be extremely difficult. One approach to remedy this challenge is to utilize weather information from multiple points across a geographical grid to obtain a holistic view of the wind patterns, along with temporal information from the previous power outputs of the wind farms. Our proposed CNN-RNN architecture combines convolutional neural networks (CNNs) and recurrent neural networks (RNNs) to extract spatial and temporal information from multi-dimensional input data to make day-ahead predictions. In this regard, our method incorporates an ultra-wide learning view, combining data from multiple numerical weather prediction models, wind farms, and geographical locations. Additionally, we experiment with global forecasting approaches to understand the impact of training the same model over the datasets obtained from multiple different wind farms, and we employ a method where spatial information extracted from convolutional layers is passed to a tree ensemble (e.g., Light Gradient Boosting Machine (LGBM)) instead of fully connected layers. The results show that our proposed CNN-RNN architecture outperforms other models such as LGBM, Extra Tree regressor and linear regression when trained globally, but fails to replicate such performance when trained individually on each farm. We also observe that passing the spatial information from CNN to LGBM improves its performance, providing further evidence of CNN's spatial feature extraction capabilities.
translated by 谷歌翻译
通过为患者启用远程医疗服务,远程医疗有助于促进医疗专业人员的机会。随着必要的技术基础设施的出现,这些服务已逐渐流行。自从Covid-19危机开始以来,远程医疗的好处就变得更加明显,因为人们在大流行期间倾向于亲自探望医生。在本文中,我们专注于促进医生和患者之间的聊天课程。我们注意到,随着对远程医疗服务的需求的增加,聊天体验的质量和效率可能至关重要。因此,我们为医学对话开发了一种智能的自动反应生成机制,该机制可帮助医生有效地对咨询请求做出反应,尤其是在繁忙的课程中。我们探索了9个月内收集的医生和患者之间的900,000多个匿名的历史在线信息。我们实施聚类算法,以确定医生最常见的响应,并相应地手动标记数据。然后,我们使用此预处理数据来训练机器学习算法以生成响应。所考虑的算法有两个步骤:过滤(即触发)模型,以滤除不可行的患者消息和一个响应发生器,以建议成功通过触发阶段的响应前3位医生响应。该方法为Precision@3提供了83.28 \%的精度,并显示出其参数的鲁棒性。
translated by 谷歌翻译
Vehicle-to-Everything (V2X) communication has been proposed as a potential solution to improve the robustness and safety of autonomous vehicles by improving coordination and removing the barrier of non-line-of-sight sensing. Cooperative Vehicle Safety (CVS) applications are tightly dependent on the reliability of the underneath data system, which can suffer from loss of information due to the inherent issues of their different components, such as sensors failures or the poor performance of V2X technologies under dense communication channel load. Particularly, information loss affects the target classification module and, subsequently, the safety application performance. To enable reliable and robust CVS systems that mitigate the effect of information loss, we proposed a Context-Aware Target Classification (CA-TC) module coupled with a hybrid learning-based predictive modeling technique for CVS systems. The CA-TC consists of two modules: A Context-Aware Map (CAM), and a Hybrid Gaussian Process (HGP) prediction system. Consequently, the vehicle safety applications use the information from the CA-TC, making them more robust and reliable. The CAM leverages vehicles path history, road geometry, tracking, and prediction; and the HGP is utilized to provide accurate vehicles' trajectory predictions to compensate for data loss (due to communication congestion) or sensor measurements' inaccuracies. Based on offline real-world data, we learn a finite bank of driver models that represent the joint dynamics of the vehicle and the drivers' behavior. We combine offline training and online model updates with on-the-fly forecasting to account for new possible driver behaviors. Finally, our framework is validated using simulation and realistic driving scenarios to confirm its potential in enhancing the robustness and reliability of CVS systems.
translated by 谷歌翻译
Deep learning approaches for spatio-temporal prediction problems such as crowd-flow prediction assumes data to be of fixed and regular shaped tensor and face challenges of handling irregular, sparse data tensor. This poses limitations in use-case scenarios such as predicting visit counts of individuals' for a given spatial area at a particular temporal resolution using raster/image format representation of the geographical region, since the movement patterns of an individual can be largely restricted and localized to a certain part of the raster. Additionally, current deep-learning approaches for solving such problem doesn't account for the geographical awareness of a region while modelling the spatio-temporal movement patterns of an individual. To address these limitations, there is a need to develop a novel strategy and modeling approach that can handle both sparse, irregular data while incorporating geo-awareness in the model. In this paper, we make use of quadtree as the data structure for representing the image and introduce a novel geo-aware enabled deep learning layer, GA-ConvLSTM that performs the convolution operation based on a novel geo-aware module based on quadtree data structure for incorporating spatial dependencies while maintaining the recurrent mechanism for accounting for temporal dependencies. We present this approach in the context of the problem of predicting spatial behaviors of an individual (e.g., frequent visits to specific locations) through deep-learning based predictive model, GADST-Predict. Experimental results on two GPS based trace data shows that the proposed method is effective in handling frequency visits over different use-cases with considerable high accuracy.
translated by 谷歌翻译
Manual prescription of the field of view (FOV) by MRI technologists is variable and prolongs the scanning process. Often, the FOV is too large or crops critical anatomy. We propose a deep-learning framework, trained by radiologists' supervision, for automating FOV prescription. An intra-stack shared feature extraction network and an attention network are used to process a stack of 2D image inputs to generate output scalars defining the location of a rectangular region of interest (ROI). The attention mechanism is used to make the model focus on the small number of informative slices in a stack. Then the smallest FOV that makes the neural network predicted ROI free of aliasing is calculated by an algebraic operation derived from MR sampling theory. We retrospectively collected 595 cases between February 2018 and February 2022. The framework's performance is examined quantitatively with intersection over union (IoU) and pixel error on position, and qualitatively with a reader study. We use the t-test for comparing quantitative results from all models and a radiologist. The proposed model achieves an average IoU of 0.867 and average ROI position error of 9.06 out of 512 pixels on 80 test cases, significantly better (P<0.05) than two baseline models and not significantly different from a radiologist (P>0.12). Finally, the FOV given by the proposed framework achieves an acceptance rate of 92% from an experienced radiologist.
translated by 谷歌翻译
Skeleton-based Motion Capture (MoCap) systems have been widely used in the game and film industry for mimicking complex human actions for a long time. MoCap data has also proved its effectiveness in human activity recognition tasks. However, it is a quite challenging task for smaller datasets. The lack of such data for industrial activities further adds to the difficulties. In this work, we have proposed an ensemble-based machine learning methodology that is targeted to work better on MoCap datasets. The experiments have been performed on the MoCap data given in the Bento Packaging Activity Recognition Challenge 2021. Bento is a Japanese word that resembles lunch-box. Upon processing the raw MoCap data at first, we have achieved an astonishing accuracy of 98% on 10-fold Cross-Validation and 82% on Leave-One-Out-Cross-Validation by using the proposed ensemble model.
translated by 谷歌翻译
在社交媒体中发现进攻性语言是社交媒体面临的主要挑战之一。研究人员提出了许多高级方法来完成这项任务。在本报告中,我们尝试利用他们的方法中的学习,并结合我们的想法以改进它们。我们在对进攻推文分类中成功实现了74%的准确性。我们还列出了社交媒体界的滥用内容检测中的即将到来的挑战。
translated by 谷歌翻译
小型模块化反应堆的概念改变了解决未来能源危机的前景。考虑到其较低的投资要求,模块化,设计简单性和增强的安全功能,这种新的反应堆技术非常有希望。人工智能驱动的多尺度建模(中子,热液压,燃料性能等)在小型模块化反应堆的研究中纳入了数字双胞胎和相关的不确定性。在这项工作中,进行了一项关于耐亡燃料的多尺度建模的全面研究。探索了这些燃料在轻水的小型模块化反应堆中的应用。本章还重点介绍了机器学习和人工智能在设计优化,控制和监视小型模块反应器中的应用。最后,简要评估了有关人工智能在高燃烧复合事故耐受燃料的发展中的研究差距。还讨论了实现这些差距的必要行动。
translated by 谷歌翻译
当今智能城市中产生的大型视频数据从其有目的的用法角度引起了人们的关注,其中监视摄像机等是最突出的资源,是为大量数据做出贡献的最突出的资源,使其自动化分析成为计算方面的艰巨任务。和精确。暴力检测(VD)在行动和活动识别域中广泛崩溃,用于分析大型视频数据,以了解由于人类而引起的异常动作。传统上,VD文献基于手动设计的功能,尽管开发了基于深度学习的独立模型的进步用于实时VD分析。本文重点介绍了深度序列学习方法以及检测到的暴力的本地化策略。该概述还介入了基于机器学习的初始图像处理和基于机器学习的文献及其可能具有的优势,例如针对当前复杂模型的效率。此外,讨论了数据集,以提供当前模型的分析,并用对先前方法的深入分析得出的VD域中的未来方向解释了他们的利弊。
translated by 谷歌翻译
航空基站(ABS)允许智能农场从物联网(IoT)设备的ABS卸载复杂任务的处理责任。 IoT设备的能源和计算资源有限,因此需要为需要ABS支持的系统提供高级解决方案。本文介绍了一种新型的基于多进取的风险敏感的增强学习方法,用于用于智能农业的ABS任务计划。该问题被定义为任务卸载,并在其截止日期之前完成IoT任务的严格条件。此外,该算法还必须考虑ABS的能量能力有限。结果表明,我们提出的方法的表现优于几种启发式方法和经典的Q学习方法。此外,我们提供了混合整数线性编程解决方案,以确定性能的下限,并阐明我们的风险敏感解决方案与最佳解决方案之间的差距。比较证明了我们的广泛仿真结果表明,我们的方法是一种有前途的方法,可以为智能农场中的物联网任务提供保证的任务处理服务,同时增加了该农场中ABS的悬停时间。
translated by 谷歌翻译